0 N ov 2 00 7 Use of Complex Lie Symmetries for Linearization of Systems of Differential Equations - II : Partial Differential Equations
نویسندگان
چکیده
The linearization of complex ordinary differential equations is studied by extending Lie’s criteria for linearizability to complex functions of complex variables. It is shown that the linearization of complex ordinary differential equations implies the linearizability of systems of partial differential equations corresponding to those complex ordinary differential equations. The invertible complex transformations can be used to obtain invertible real transformations that map a system of nonlinear partial differential equations into a system of linear partial differential equation. Explicit invariant criteria are given that provide procedures for writing down the solutions of the linearized equations. A few non-trivial examples are mentioned.
منابع مشابه
N ov 2 00 7 Use of Complex Lie Symmetries for Linearization of Systems of Differential Equations - I : Ordinary Differential Equations
The Lie linearizability criteria are extended to complex functions for complex ordinary differential equations. The linearizability of complex ordinary differential equations is used to study the linearizability of corresponding systems of two real ordinary differential equations. The transformations that map a system of two nonlinear ordinary differential equations into systems of linear ordin...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملPolynomial and non-polynomial solutions set for wave equation with using Lie point symmetries
This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE). We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry. We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. A generalized procedure for polynomial solution is pr...
متن کاملA Diffusion Equation with Exponential Nonlinearity Recant Developments
The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...
متن کامل